بررسی عوامل اقتصادی-اجتماعی مؤثر بر فساد اداری در کشورهای منتخب تولیدکننده نفت: کاربرد مدل Panel VAR

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری رشته اقتصاد بین الملل دانشگاه آزاد اسلامی واحد الیگودرز، الیگودرز، ایران

2 .(نویسنده مسئول) استادیار گروه اقتصاد دانشگاه آزاد اسلامی واحد یزد، یزد، ایران.

چکیده

هدف این مطالعه بررسی عوامل مؤثر بر فساد اداری در کشورهای تولیدکننده نفت با استفاده از روش Panel Var در دوره زمانی 1996تا2019 است. بدین منظور این کشورها به دو دسته کشورهای با درآمد سرانه بالا و کشورهای با درآمد سرانه پایین تقسیم شده‌اند. با توجه به پیشینه تحقیق و مرور مبانی نظری سه دسته عوامل شامل عوامل اقتصادی (رشد اقتصادی و نسبت هزینه‌های دولت به تولید ناخالص داخلی)، عوامل اجتماعی (ضریب جینی) و عوامل سیاسی (دموکراسی و بروکراسی) اثرگذار بر شاخص فساد اداری در نظر گرفته شده است. نتایج نشان داد که در کشورهای با درآمد سرانه پایین، نسبت هزینه‌های دولت به GDP، بروکراسی و ضریب جینی منجر به افزایش شاخص فساد اداری می‌شوند. در مقابل در کشورهای تولیدکننده نفت با درآمد سرانه بالا متغیرهای نرخ رشد اقتصادی، نسبت هزینه‌های دولت به GDP، بهبود دموکراسی و بروکراسی منجر به کاهش شاخص فساد اداری می‌شوند و افزایش ضریب جینی در این کشورها به افزایش شاخص فساد اداری منجر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

To Examine Social-Economical Factors Effective on Corruption in Oil Producer Selected Countries: Panel VAR Model Application

نویسندگان [English]

  • Reza Homaunifar 1
  • Jalil Totonchi 2
1 Ph.D. Student in International Economics, Islamic Azad University, Aligudarz Branch, Aligudarz, Iran
2 Assistant professor, Corresponding Author, Islamic Azad University, Yazd Branch, Yazd, Iran.
چکیده [English]

This study aims at examining factors effective on corruption in oil producer countries using the Panel VAR method in the 1996 - 2019 period. For this, these countries have been divided into two groups of countries with high annual income and ones with low annual income. Based on the research background and reviewing theoretical bases, three factors were considered effective on the corruption index, including economical factors ( economical growth and government costs to GDP ratio ), social factors ( Gini coefficient ), and factors ( democracy and bureaucracy ). Results indicated that in countries with low annual income, the government costs to GDP ratio, bureaucracy, and Gini coefficient lead to increase corruption index. In contrast, in oil producer countries, with high annual income, the economic growth rate, Government costs to GDP ratio ، improving democracy and bureaucracy lead to corruption index and increasing Gini coefficient leads to increase corruption index in these countries.

کلیدواژه‌ها [English]

  • Corruption
  • bureaucracy
  • Economical-social factors
  • Oil producer countries
  • Panel Var
Ackerman, R.S. (1978). Corruption: A Study in Political Economy. Academic Press, New York.
Adam, I. O. (2020). Examining E-Government development effects on corruption in Africa: the mediating effects of ICT development and institutional quality. Technology in Society61, 101245.
Aidt, T. S. (2003). Economic analysis of corruption: a survey. The Economic Journal113(491), F632-F652.
Akca, H., Ata, A. Y., & Karaca, C. (2012). Inflation and corruption relationship: Evidence from panel data in developed and developing countries. International Journal of Economics and Financial Issues2(3), 281-295.
Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of econometrics68(1), 29-51.
Arezki, R., & Brückner, M. (2011). Oil rents, corruption, and state stability: Evidence from panel data regressions. European Economic Review55(7), 955-963.
Aslaksen, S. (2007). Corruption and oil: Evidence from panel data. Unpublished Manuscript.
Ata, A. Y., & Arvas, M. A. (2011). Determinants of economic corruption: a cross-country data analysis. International Journal of Business and Social Science2(13), 161-169.
Auty, R. M. (1993). Sustaining Development in Mineral Economies: The Resource CurseThesis. London: Rutledge.
Baltagi, B. H. (2005). Econometric analysis of panel data 3rd Edition England JW & Sons.
Becker, Howard S., (1968). Social observation and social case studies, in Sills, D.L. (ed.), International Encyclopedia of the Social Sciences, vol. 11, New York: Macmillan and Free Press.
Bhattacharyya, S., & Hodler, R. (2012). Media Freedom and Democracy: Complements or Substitutes in the Fight against Corruption?. Centre for the Study of African Economies.
Billger, S. M., & Goel, R. K. (2009). Do existing corruption levels matter in controlling corruption?: Cross-country quantile regression estimates. Journal of Development Economics90(2), 299-305.
Canova, F.; & Ciccarelli, M. (2013). Panel vector autoregressive models: A survey, Advances in econometrics, 32, 205-246.
Corrado, G., & Rossetti, F. (2018). Public corruption: A study across regions in Italy. Journal of Policy Modeling40(6), 1126-1139.
Dahmardeh, N.; Alizadeh, M.; Zeidizade, S. (2012). Examining Effect of Government Size on Corruption; With Emphasis on the Role of Democracy in MENA. Journal Of Economics and Regional Development1391(4), 48-74.
Ebrahimi, M; Salarian,M and Haji Mirzaei,,M.A(2008); To examine oil revenues mechanisms effective on economical growth of oil exporter countries,from natural resources disaster point of view, Energy economy studies, 5(16).
Esfahani, P. (2017). The Effect of Combining Economic Activities on Corruption; A Case Study of Developing Countries. Quarterly Journal of Economic Growth and Development Research7(27), 157-170.
Ezzati, M., Seif, A., Mehregan, N., & Maleki Shahrivar, M. (2015). The Short-and Long-Run Effects of Oil Revenues on Economic Corruption in Iran. The Economic Research16(2), 73-98.
Farooq, A., Shahbaz, M., Arouri, M., & Teulon, F. (2013). Does corruption impede economic growth in Pakistan?. Economic Modelling35, 622-633.
Ghaniy, N., & Hastiadi, F. F. (2017). Political, social and economic determinants of corruption. International Journal of Economics and Financial Issues7(4), 144-149.
Gylfason, T. (2001). Natural resources, education, and economic development. European economic review45(4-6), 847-859.
Jafari S.; Ahmad, E.; Zahra S. (2011). Corruption, government size and extent of economy play in growth models. Commerce Research Chapter, 61, 113-134.
Klitgaard, R. (1998). International cooperation against corruption. Finance and development35(1), 3.
Kotera, G., Okada, K., & Samreth, S. (2012). Government size, democracy, and corruption: An empirical investigation. Economic Modelling29(6), 2340-2348.
Kurniawan, Y., Ratnasari, R. T., & Mustika, H. (2020). The corruption and human development to the economic growth of oic countries. JEBIS (Jurnal Ekonomi dan Bisnis Islam)6(2), 209-220.
Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics108(1), 1-24.
Love, I. & Zicchino L. (2006). Financial development and dynamic investment behavior: Evidence from panel VAR. The Quarterly Review of Economics and Finance46(2), 190-210.
Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics68(1), 79-113.
Rahmani, T.; Isfahani, P. (2016). The effect of economical activities compound on corruption: Iran and OPEC countries case study. Iran Applicable Economical Studies Scientific-Research Chapter, 5(19), 187-210.
Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The stata journal9(1), 86-136.
Ross, M. L. (1999). The Political Economy of the Resource Curse; World Politics, 51(2), 297-322.
Sabahi, A; & Malek al-Sadati, S. (2009). effect of controling financial corruption on economy growth. Commerce research, 14(50), 35-7.
Sachs, J. D., & Warner A. M. (2001). Natural Resources and Economic Development: The Curse of Natural Resources, European Economic Review, 45(4-6), 827-838.
Sadeqi, H.; Asari Arani, A.; & Sheqaqi Shahri, H. (2010). to measure financial corruption in Iran ysing fuzzy logic (economical approach), economical research, 10(4), 174-139.
Salih, M. A. R. (2013). The determinants of economic corruption: A probabilistic approach. Advances in Management and Applied Economics3(3), 155.
Sepehrdoost, H.;  & Borjian, A. (2018). corruption relationship with possession rights, unequality of revenue and democracy; selected countries experimental evidence, two research-scientifical chapters of Iran economical inquiries,15(29), 143-172.
Serra, D. (2006). Empirical determinants of corruption: A sensitivity analysis. Public Choice126(1), 225-256.
Shabbir, G., & Anwar, M. (2007). Determinants of corruption in developing countries. The Pakistan Development Review, 46(4), 751-764.
Sims, C.A. (1980), Macroeconomics and Reality, Econometrica, 4,1-48.
Soreide, T. (2014). Drivers of Corruption: A Brief review. World Bank Studies. Washington, DC: World Bank. doi: 10.1596/978-1-4648-0401-4. License: Creative Commons Attribution CC By3.0 IGO.
Taqi Nejad Omran, V.; Bahrami, J., & Nasiri, H. (2015). To examine globalization effect on reducing Mana countries bureaucracy corruption. Globalization strategic studies chapter, 6(16), 261-237
Transparency International. (2015). What are the Costs of Corruption? Retrieved from https://www.transparency.org/what-is-corruption#define.
Türedi, S., & Altıner, A. (2016). Economic and Political Factors Affecting Corruption in Developing Countries. Int. J. Eco. Res7(1), 104-120.
Ushie, V., Adeniyi, O., & Akongwale, S. (2012). Oil revenues, institutions and macroeconomic performance in Nigeria. CSEA Working Paper WPS/12/02.
Varherami, V.; Javaher dehi, S.; & Dashtban farooji, S. (2015). To examine the relationship between economical growth, developing bank sector and economical macro variables using panel var method. Case study of the countries group D8. Economy Research-scientifical magazine, 12(4), 65-39