آیا قیمت‌های نفت خام حاوی ریشه واحد غیرخطی با ضرایب تصادفی است؟

نوع مقاله : علمی

نویسندگان

1 دانشجوی دکتری مالی، گروه مدیریت، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران

2 دانشجوی دکتری مالی،گروه مالی و بانکی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران

چکیده

مدلسازی قیمت نفت به این موضوع بستگی دارد که داده‌های آن مصادیقی از فرآیندهای روند قطعی یا روند تصادفی باشند. تمیز میان این فرآیندها به دلیل نحوه واکنش بلندمدت قیمت‌های نفت خام به شوک‌ها بسیار مهم است. در پژوهش حاضر، برای بررسی ریشه‌های واحد غیرخطی پیچیده از مدل RCAR استفاده شده است. در این نوع از مدلسازی، تایید وجود ریشه واحد RCAR به معنای آن نیست که قیمت‌های نفت خام از یک فرآیند براونی تبعیت کنند. بنابراین، حتی با تایید ریشه واحد نیز نمی‌توان کارآیی ضعیف بازار نفت را نتیجه گرفت. نتایج پژوهش نشان می‌دهد که ریشه واحد در داده های نفت خام از نوع تصادفی است. در نتیجه، با تفاضل‌گیری داده های نفت خام مانا نمی‌شود. لذا، استفاده از متغیر تفاضل‌گیری شده در مدل‌های هم‌انباشتگی نیز نادرست خواهد بود و باید از الگوهای RCAR استفاده شود. این موضوع در پیش‌بینی جهت آتی قیمت‌های نفت خام بسیار مهم است. همچنین، به دلیل آنکه نفت خام ورودی بسیاری از صنایع است؛ نامانایی نفت خام می­تواند به سایر متغیرهای کلان اقتصادی منتقل شود. لذا، نظریه‌های ادوار تجاری که شوک‌های اقتصادی را موقت می‌انگارند از پشتیبانی ضعیفی برخوردار خواهند بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Do Crude Oil Prices Contain Nonlinear Unit roots with Random Coefficients?

نویسندگان [English]

  • Alireza Najjarpour 1
  • mohsen eslami 2
1 Ph.D. Candidate. in Management, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
2 Ph.D. Candidate. in Management, Department of Finance and Banking, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran
چکیده [English]

Modeling of oil price behavior depends on whether we distinguish the observed data as examples of deterministic or random trend processes. The distinction between these processes is crucial because of the long-term response of data series to shocks. Generally, in standard significance tests, the null hypothesis is tested for the difference between the insignificant and significant hypotheses. In the present study, to investigate the root of the non-difference stationary unit from Bayesian methods, we estimate the RCAR model considered for oil prices. The results of this study show that despite confirming the unit root in oil price data, it is not clear that whether a random step process is suitable for predicting Brent crude oil prices or not because confirming the existence of a random unit root does not necessarily mean that the crude oil spot prices follow a Brownian process. Therefore, it is not possible to conclude from such results that the efficiency of the oil market is insignificant. However, because the unit root in the crude oil data is random, it does not persist with the differentiation of the crude oil data; therefore, the use of the differentiated variable in conventional co-integration models will be incorrect. Also, because the crude oil is the input of many industries, this anonymity could be transferred to other macroeconomic variables. Therefore, theories of business cycles that portray temporary economic shocks will have weak support.

کلیدواژه‌ها [English]

  • Unit root tests
  • Bayesian approach
  • Random unit root
  • Gibbs sampling algorithm
Abadir, K. M. (2004). Cointegration theory, equilibrium and disequilibrium economics. The Manchester School, 72(1), 60-71.
Aslan, A. (2011). Does natural gas consumption follow a nonlinear path over time? Evidence from 50 US States. Renewable and Sustainable Energy Reviews, 15(9), 4466-4469.
Aslan, A., & Kum, H. (2011). The stationary of energy consumption for Turkish disaggregate data by employing linear and nonlinear unit root tests. Energy, 36(7), 4256-4258.
Balcilar, M., Ozdemir, Z. A., Ozdemir, H., & Shahbaz, M. (2018). The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method. Renewable Energy, 126, 594-604.
Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
Chen, P. F., & Lee, C. C. (2007). Is energy consumption per capita broken stationary? New evidence from regional-based panels. Energy Policy, 35(6), 3526-3540.
Cook, S. (2008). Joint maximum likelihood estimation of unit root testing equations and GARCH processes: some finite-sample issues. Mathematics and Computers in Simulation, 77(1), 109-116.
Cuñado, J., Gil-Alana, L. A., & De Gracia, F. P. (2003). Empirical evidence on real convergence in some OECD countries. Applied Economics Letters, 10(3), 173-176.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431.
Distaso, W. (2008). Testing for unit root processes in random coefficient autoregressive models. Journal of Econometrics, 142(1), 581-609.
Ehsanfar, M. H. (2021). An investigation of the long-term impact of exchange rate uncertainty on the growth of industrial production: FMOLS and DOLS Approaches. Macroeconomics Research Letter15(30), 252-271. (In Persian)
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bayesian data analysis. Chapman and Hall/CRC.
Gelman, A., Gilks, W. R., & Roberts, G. O. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. The Annals of Supplied Probability, 7(1), 110-120.
Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica: Journal of the Econometric Society, 1317-1339.
Granger, C. W., & Terasvirta, T. (1993). Modelling non-linear economic relationships. OUP Catalogue.
Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship. Journal of Monetary Economics, 38(2), 215-220.
Hasanov, M., & Telatar, E. (2011). A re-examination of stationarity of energy consumption: evidence from new unit root tests. Energy Policy, 39(12), 7726-7738.
Hendry, D. F., & Juselius, K. (2000). Explaining cointegration analysis: Part 1. The Energy Journal, 21(1).
Hsu, Y. C., Lee, C. C., & Lee, C. C. (2008). Revisited: are shocks to energy consumption permanent or temporary? New evidence from a panel SURADF approach. Energy Economics, 30(5), 2314-2330.
Iglesias, E. M., & Rivera-Alonso, D. (2022). Brent and WTI oil prices volatility during major crises and Covid-19. Journal of Petroleum Science and Engineering, 211, 110182.
Kim, I. M., & Loungani, P. (1992). The role of energy in real business cycle models. journal of Monetary Economics, 29(2), 173-189.
Kim, K., & Schmidt, P. (1993). Unit root tests with conditional heteroskedasticity. Journal of Econometrics, 59(3), 287-300.
Koop, G. (1994). An objective Bayesian analysis of common stochastic trends in international stock prices and exchange rates. Journal of Empirical Finance, 1(3-4), 343-364.
Leybourne, S. J., McCabe, B. P., & Tremayne, A. R. (1996). Can economic time series be differenced to stationarity? Journal of Business & Economic Statistics, 14(4), 435-446.
Li, Y., Liu, X. B., & Yu, J. (2015). A Bayesian chi-squared test for hypothesis testing. Journal of Econometrics, 189(1), 54-69.
Li, Y., Zeng, T., & Yu, J. (2014). A new approach to Bayesian hypothesis testing. Journal of Econometrics, 178, 602-612.
Makiyan, S. N., Rostami, M., & Ramezani, H. (2018). Analyzing the relation between robbery and income inequality using Bayesian approach: (The Case of Iran). The Economic Research, 18(3), 145-166. (In Persian)
Medina‐Bellver, J. I., Marín, P., Delgado, A., Rodríguez‐Sánchez, A., Reyes, E., Ramos, J. L., & Marqués, S. (2005). Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environmental Microbiology, 7(6), 773-779.
Maslyuk, S., & Smyth, R. (2008). Unit root properties of crude oil spot and futures prices. Energy Policy, 36(7), 2591-2600.
Maslyuk, S., & Smyth, R. (2009). Non-linear unit root properties of crude oil production. Energy Economics, 31(1), 109-118.
McCabe, B. P., & Tremayne, A. R. (1995). Testing a time series for difference stationarity. The Annals of Statistics, 1015-1028.
Narayan, P. K., & Liu, R. (2011). Are shocks to commodity prices persistent?. Applied Energy, 88(1), 409-416.
Narayan, P. K., & Smyth, R. (2007). Are shocks to energy consumption permanent or temporary? Evidence from 182 countries. Energy Policy, 35(1), 333-341.
Narayan, P. K., & Liu, R. (2015). A unit root model for trending time-series energy variables. Energy Economics, 50, 391-402.
Narayan, P. K., Liu, R., & Westerlund, J. (2016). A GARCH model for testing market efficiency. Journal of International Financial Markets, Institutions and Money, 41, 121-138.
Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: some evidence and implications. Journal of Monetary Economics, 10(2), 139-162.
Nicholls, D. F., & Quinn, B. G. (1982). An Application. In Random coefficient autoregressive models: An introduction (pp. 139-149). Springer, New York, NY.
Nicholls, D. F., & Quinn, B. G. (2012). Random Coefficient Autoregressive Models: An Introduction (Vol. 11). Springer Science & Business Media.
Papapetrou, E. (2001). Oil price shocks, stock market, economic activity, and employment in Greece. Energy Economics, 23(5), 511-532.
Phillips, P. C., & Ploberger, W. (1996). An asymptotic theory of Bayesian inference for time series. Econometrica: Journal of the Econometric Society, 381-412.
Phillips, P. C. (1991). To criticize the critics: An objective Bayesian analysis of stochastic trends. Journal of Applied Econometrics, 6(4), 333-364.
Phillips, P. C., & Ploberger, W. (1994). Posterior odds testing for a unit root with data-based model selection. Econometric Theory, 10(3-4), 774-808.
Pindyck, R. S. (1999). The long-run evolutions of energy prices. The Energy Journal, 20(2).
Pindyck, R. S. (2004). Volatility in natural gas and oil markets. The Journal of Energy and Development, 30(1), 1-19.
Pindyck, R. S. (2004). Volatility and commodity price dynamics. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 24(11), 1029-1047.
Rostami, M., & Shahiki Tash, M. N. (2020). Modeling crude oil price dynamics: Investigation of jump and volatility using stochastic volatility models (Case study: WTI crude oil prices in 2020 and 2021). Iranian Energy Economics, 10(37), 37-72. doi: 10.22054/jiee.2022.64997.1876. (In Persian).
Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449-469.
Salisu, A. A., & Adeleke, A. I. (2016). Further application of Narayan and Liu (2015) unit root model for trending time series. Economic Modelling, 55, 305-314.
Seo, B. (1999). Distribution theory for unit root tests with conditional heteroskedasticity. Journal of Econometrics, 91(1), 113-144.
Serletis, A. (1992). Unit root behavior in energy futures prices. The Energy Journal, 13(2).
Sims, C. A. (1988). Bayesian skepticism on unit root econometrics. Journal of Economic Dynamics and Control, 12(2-3), 463-474.
Sims, C. A., & Uhlig, H. (1991). Understanding unit rooters: A helicopter tour. Econometrica: Journal of the Econometric Society, 1591-1599.
Stock, J. H. (1991). Bayesian approaches to the unit root problem: A comment. Journal of Applied Econometrics, 403-411.
Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing & Service Operations Management, 2(4), 372-391.
Tong, H. (1990). Non-linear time series: A dynamical system approach. Oxford University Press.
Wang, D., Ghosh, S. K., & Pantula, S. G. (2010). Maximum likelihood estimation and unit root test for first order random coefficient autoregressive models. Journal of Statistical Theory and Practice, 4(2), 261-278.
Westerlund, J., & Larsson, R. (2012). Testing for a unit root in a random coefficient panel data model. Journal of Econometrics, 167(1), 254-273.
Zavadska, M., Morales, L., & Coughlan, J. (2020). Brent crude oil prices volatility during major crises. Finance Research Letters, 32, 101078.
Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 20(1), 25-44.