Abadir, K. M. (2004). Cointegration theory, equilibrium and disequilibrium economics. The Manchester School, 72(1), 60-71.
Aslan, A. (2011). Does natural gas consumption follow a nonlinear path over time? Evidence from 50 US States. Renewable and Sustainable Energy Reviews, 15(9), 4466-4469.
Aslan, A., & Kum, H. (2011). The stationary of energy consumption for Turkish disaggregate data by employing linear and nonlinear unit root tests. Energy, 36(7), 4256-4258.
Balcilar, M., Ozdemir, Z. A., Ozdemir, H., & Shahbaz, M. (2018). The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method. Renewable Energy, 126, 594-604.
Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
Chen, P. F., & Lee, C. C. (2007). Is energy consumption per capita broken stationary? New evidence from regional-based panels. Energy Policy, 35(6), 3526-3540.
Cook, S. (2008). Joint maximum likelihood estimation of unit root testing equations and GARCH processes: some finite-sample issues. Mathematics and Computers in Simulation, 77(1), 109-116.
Cuñado, J., Gil-Alana, L. A., & De Gracia, F. P. (2003). Empirical evidence on real convergence in some OECD countries. Applied Economics Letters, 10(3), 173-176.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431.
Distaso, W. (2008). Testing for unit root processes in random coefficient autoregressive models. Journal of Econometrics, 142(1), 581-609.
Ehsanfar, M. H. (2021). An investigation of the long-term impact of exchange rate uncertainty on the growth of industrial production: FMOLS and DOLS Approaches. Macroeconomics Research Letter, 15(30), 252-271. (In Persian)
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bayesian data analysis. Chapman and Hall/CRC.
Gelman, A., Gilks, W. R., & Roberts, G. O. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. The Annals of Supplied Probability, 7(1), 110-120.
Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica: Journal of the Econometric Society, 1317-1339.
Granger, C. W., & Terasvirta, T. (1993). Modelling non-linear economic relationships. OUP Catalogue.
Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship. Journal of Monetary Economics, 38(2), 215-220.
Hasanov, M., & Telatar, E. (2011). A re-examination of stationarity of energy consumption: evidence from new unit root tests. Energy Policy, 39(12), 7726-7738.
Hendry, D. F., & Juselius, K. (2000). Explaining cointegration analysis: Part 1. The Energy Journal, 21(1).
Hsu, Y. C., Lee, C. C., & Lee, C. C. (2008). Revisited: are shocks to energy consumption permanent or temporary? New evidence from a panel SURADF approach. Energy Economics, 30(5), 2314-2330.
Iglesias, E. M., & Rivera-Alonso, D. (2022). Brent and WTI oil prices volatility during major crises and Covid-19. Journal of Petroleum Science and Engineering, 211, 110182.
Kim, I. M., & Loungani, P. (1992). The role of energy in real business cycle models. journal of Monetary Economics, 29(2), 173-189.
Kim, K., & Schmidt, P. (1993). Unit root tests with conditional heteroskedasticity. Journal of Econometrics, 59(3), 287-300.
Koop, G. (1994). An objective Bayesian analysis of common stochastic trends in international stock prices and exchange rates. Journal of Empirical Finance, 1(3-4), 343-364.
Leybourne, S. J., McCabe, B. P., & Tremayne, A. R. (1996). Can economic time series be differenced to stationarity? Journal of Business & Economic Statistics, 14(4), 435-446.
Li, Y., Liu, X. B., & Yu, J. (2015). A Bayesian chi-squared test for hypothesis testing. Journal of Econometrics, 189(1), 54-69.
Li, Y., Zeng, T., & Yu, J. (2014). A new approach to Bayesian hypothesis testing. Journal of Econometrics, 178, 602-612.
Makiyan, S. N., Rostami, M., & Ramezani, H. (2018). Analyzing the relation between robbery and income inequality using Bayesian approach: (The Case of Iran). The Economic Research, 18(3), 145-166. (In Persian)
Medina‐Bellver, J. I., Marín, P., Delgado, A., Rodríguez‐Sánchez, A., Reyes, E., Ramos, J. L., & Marqués, S. (2005). Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environmental Microbiology, 7(6), 773-779.
Maslyuk, S., & Smyth, R. (2008). Unit root properties of crude oil spot and futures prices. Energy Policy, 36(7), 2591-2600.
Maslyuk, S., & Smyth, R. (2009). Non-linear unit root properties of crude oil production. Energy Economics, 31(1), 109-118.
McCabe, B. P., & Tremayne, A. R. (1995). Testing a time series for difference stationarity. The Annals of Statistics, 1015-1028.
Narayan, P. K., & Liu, R. (2011). Are shocks to commodity prices persistent?. Applied Energy, 88(1), 409-416.
Narayan, P. K., & Smyth, R. (2007). Are shocks to energy consumption permanent or temporary? Evidence from 182 countries. Energy Policy, 35(1), 333-341.
Narayan, P. K., & Liu, R. (2015). A unit root model for trending time-series energy variables. Energy Economics, 50, 391-402.
Narayan, P. K., Liu, R., & Westerlund, J. (2016). A GARCH model for testing market efficiency. Journal of International Financial Markets, Institutions and Money, 41, 121-138.
Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: some evidence and implications. Journal of Monetary Economics, 10(2), 139-162.
Nicholls, D. F., & Quinn, B. G. (1982). An Application. In Random coefficient autoregressive models: An introduction (pp. 139-149). Springer, New York, NY.
Nicholls, D. F., & Quinn, B. G. (2012). Random Coefficient Autoregressive Models: An Introduction (Vol. 11). Springer Science & Business Media.
Papapetrou, E. (2001). Oil price shocks, stock market, economic activity, and employment in Greece. Energy Economics, 23(5), 511-532.
Phillips, P. C., & Ploberger, W. (1996). An asymptotic theory of Bayesian inference for time series. Econometrica: Journal of the Econometric Society, 381-412.
Phillips, P. C. (1991). To criticize the critics: An objective Bayesian analysis of stochastic trends. Journal of Applied Econometrics, 6(4), 333-364.
Phillips, P. C., & Ploberger, W. (1994). Posterior odds testing for a unit root with data-based model selection. Econometric Theory, 10(3-4), 774-808.
Pindyck, R. S. (1999). The long-run evolutions of energy prices. The Energy Journal, 20(2).
Pindyck, R. S. (2004). Volatility in natural gas and oil markets. The Journal of Energy and Development, 30(1), 1-19.
Pindyck, R. S. (2004). Volatility and commodity price dynamics. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 24(11), 1029-1047.
Rostami, M., & Shahiki Tash, M. N. (2020). Modeling crude oil price dynamics: Investigation of jump and volatility using stochastic volatility models (Case study: WTI crude oil prices in 2020 and 2021). Iranian Energy Economics, 10(37), 37-72. doi: 10.22054/jiee.2022.64997.1876. (In Persian).
Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449-469.
Salisu, A. A., & Adeleke, A. I. (2016). Further application of Narayan and Liu (2015) unit root model for trending time series. Economic Modelling, 55, 305-314.
Seo, B. (1999). Distribution theory for unit root tests with conditional heteroskedasticity. Journal of Econometrics, 91(1), 113-144.
Serletis, A. (1992). Unit root behavior in energy futures prices. The Energy Journal, 13(2).
Sims, C. A. (1988). Bayesian skepticism on unit root econometrics. Journal of Economic Dynamics and Control, 12(2-3), 463-474.
Sims, C. A., & Uhlig, H. (1991). Understanding unit rooters: A helicopter tour. Econometrica: Journal of the Econometric Society, 1591-1599.
Stock, J. H. (1991). Bayesian approaches to the unit root problem: A comment. Journal of Applied Econometrics, 403-411.
Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing & Service Operations Management, 2(4), 372-391.
Tong, H. (1990). Non-linear time series: A dynamical system approach. Oxford University Press.
Wang, D., Ghosh, S. K., & Pantula, S. G. (2010). Maximum likelihood estimation and unit root test for first order random coefficient autoregressive models. Journal of Statistical Theory and Practice, 4(2), 261-278.
Westerlund, J., & Larsson, R. (2012). Testing for a unit root in a random coefficient panel data model. Journal of Econometrics, 167(1), 254-273.
Zavadska, M., Morales, L., & Coughlan, J. (2020). Brent crude oil prices volatility during major crises. Finance Research Letters, 32, 101078.
Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 20(1), 25-44.