نوسانات در رشد تولید ناخالص داخلی ایران: بررسی بی‌ثباتی در رشد تولید ناخالص داخلی ایران با الگوی MS-GARCH

نوع مقاله : علمی

نویسندگان

1 عضو هیات علمی دانشگاه پیام نور

2 عضو هیات علمی-دانشگاه پیام نور

3 گروه اقتصاد دانشگاه پیام نور تهران - ایران

چکیده

بررسی تلاطم و نوسانات نامنظم چرخه‌های تجاری از موضوعات مهم در امر سیاستگذاری کلان اقتصادی است، در الگوهای قبلی، تلاطم در نرخ رشد واقعی اقتصاد ثابت فرض می‌شد در حالیکه، شوک‌های تأثیرگذار بر نرخ واقعی رشد، منجر به تغییراتی در تلاطم نرخ رشد خواهند شد، در پژوهش حاضر با استفاده از مدل‌های تغییر رژیم مارکوفی در واریانس (MS-GARCH)، پایداری نوسانات در رژیم‌های مختلف حاکم بر رشد تولید ناخالص حقیقی ایران با تناوب فصلی برای سال‌های 1399:4-1383:1 بررسی شد. با مقایسه میان مدل‌ها براساس دو معیار RMSE و MAE، مدل گارچ مارکوفی با توزیع t (MS-EGARCH-std) در پیش‌بینی تلاطم، در رشد اقتصاد ایران کارآتر از سایر مدل‌ها بود که برای تجزیه و تحلیل بی ثباتی در طول رژیم‌ها استفاده شد.

نتایج نشان دادند که ضریب پایداری رژیم با تلاطم زیاد (بی ثبات) تقریبا برابر با ضریب پایداری با رژیم تلاطم ملایم (با ثبات) است و از آنجایی که احتمال ورود به رژیم با ثبات 2.5 برابر بیشتر از احتمال ورود به رژیم بی ثبات است، سیاستگذار اقتصادی باید نسبت به پیامدهای سیاست‌های خود به دلیل هزینه‌های خروج از رکود توجه بیشتری داشته باشد، زیرا تمایل به ورود به دوره‌های رکودی 4 برابر بیشتر از تمایل به ورود به دوره‌های رونق است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fluctuations in Iran's GDP growth:Investigating Instability in Iran's GDP growth with MS-GARCH Model

نویسندگان [English]

  • bita shaygani 1
  • ALIREZA EGHBALI 2
  • Ebrahim Zarrini 3
1 Faculity Member, Payame Noor University
2 Assistant Professor of Economics, Department of Economics, Payame Noor University
3 Department of Economics, Payame Noor University, Tehran, Iran.
چکیده [English]

Investigating the volatility and irregular fluctuations of business cycles is one of the most important issues in macroeconomic policy making. in previous models that have been examined, the real growth rate of the economy is constant, while the shocks that affect the real growth rate the changes in this state, which creates the variance and the stability state of the economy. It was not fixed.

In this study, using Markovian regime change in variance (MS-GARCH) models, the stability of fluctuations in different regimes governing the growth of Iran's real gross product with seasonal intervals for the years 1383:1-1399:4 has been investigated. the comparison between the models has been done using two features, RMSE and MAE.

The results indicate that the stability coefficient of the regime with high volatility (unstable) is equal to the stability coefficient with mild volatility (stable), and since the probability of entering a stable regime is 2.5 times higher than the probability of entering an unstable regime, therefore, macroeconomic policy makers should pay more attention to the consequences of the policies adopted due to the costs of exiting the recession. Because the desire to enter the stages of recession is not only much higher, but the persistence to remain in recession periods is also 4 times more than in boom periods.

کلیدواژه‌ها [English]

  • Business Cycle"
  • economic fluctuations"
  • "
  • Markovian Regime Change"
Altig, D., Baker, S., Barrero, J. M., Bloom, N., Bunn, P., Chen, S., ... & Thwaites, G. (2020). Economic uncertainty before and during the COVID-19 pandemic. Journal of Public Economics191, 104274.
Barro, R. J., & Sala-I-Martin, X. (1995). Econmic growth. New York, NY: McGraw-Hill.
Burns, A. F., & Mitchell, W. E. (1946). Measuring Business Cycles. New York: National Bureau of Economic Research.
Cipra, T. (2020). Volatility of financial time series. In Time Series in Economics and Finance, 199-230. Springer, Cham.
Drost, F. C., & Nijman, T. E. (1993). Temporal aggregation of GARCH processes. Econometrica: Journal of the Econometric Society, 909-927.
Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance48(5), 1749-1778.
Fan, E. X. (2003). SARS: economic impacts and implications. Asian Development Bank.
Farhadian, A., Rostami, M., & Nilchi, M. (2021). Compare Canonical stochastic volatility model of focal MSGJR-GARCH to measure the volatility of stock returns and calculating VaR. Financial Management Perspective10(32), 131-158. (in Persian).
Francq, C., & Zakoian, J. M. (2019). GARCH models: structure, statistical inference and financial applications. John Wiley & Sons.
Gorji E, Eghbali A R, Sharefzadeh J.(2013) RBC theory and the current financial crisis. Journal of Monetary and Financial Economics, 17(1). (in Persian).
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the econometric society, 357-384.
Hamori, S. (2000). Volatility of real GDP: some evidence from the United States, the United Kingdom and Japan. Japan and the World Economy12(2), 143-152.
Hodrick, R. J., & Prescott, E. C. (1997). Post-war US business cycles; An Empirical Investigation. Journal of money, Credit and Banking 1997; 79 (1); 1-6.
Kim, C. J., Nelson, C. R., & Piger, J. (2004). The less-volatile US economy: a Bayesian investigation of timing, breadth, and potential explanations. Journal of Business & Economic Statistics22(1), 80-93.
Lee, G., & Warner, M. (2007). The political economy of the SARS epidemic: the impact on human resources in East Asia. Routledge.
Lee, J. W. & McKibbin, W. J. (2003). The impact of SARS. In China: New Engine of World Growth. Asia Pacific Press.
McConnell, M. M., & Perez-Quiros, G. (2000). Output fluctuations in the United States: What has changed since the early 1980's?. American Economic Review90(5), 1464-1476.
McKibbin, W., & Fernando, R (2021). The global macroeconomic impacts of COVID -19: Seven scenarios. Asian Economic Papers, 20(2), 1-30.
McConnell, M. M., & Perez-Quiros, G. (2000). Output fluctuations in the United States: What has changed since the early 1980's? American Economic Review90(5), 1464-1476.
Sakhaei M, Khorsandi M ,Mohammadi T ,Arbab H.(2020). Investigating the effects of shock caused by Covid-19 virus on the Iran's economy: A GVAR Approach. Journal of Economics & Modelling, 11(2), 125-153. (in Persian).
Schultz, T. W. (1964). Changing relevance of agricultural economics. Journal of Farm Economics, 46(5), 1004-1014.
Taherpoor, J., Mirzaei, H., Soheili Ahmadi, H., & Rajabi, F. (2021). Investigating the Effect of Coronavirus Outbreak on Iran’s Gross Output. Journal of Economic Modeling Research12(44), 143-190. (in Persian).
Tayyab-nia A, Taghi Mulai A. (2015) Some facts of commercial periods in Iran's economy, Journal of Economic Research and Policies, 24(80), 57-84. (in Persian).
Terasvirta, T., & Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using smooth transition autoregressive models. Journal of applied econometrics7(1), 119-136.